

Kurt E. Floren Agricultural Commissioner Director of Weights and Measures

COUNTY OF LOS ANGELES

Department of Agricultural Commissioner/ Weights and Measures

Environmental Toxicology Laboratory 11012 Garfield Avenue, Bldg. B South Gate, California 90280 http://acwm.co.la.ca.us

California State DHS Certificate #1430 County Sanitation ID #10240

Report Date: August 22, 2012

Sample Description: Berkey Water Filter

Attention: Adam Lock

Date Received: May 23, 2012

New Millennium Concepts, Ltd.

PO Box 201411 Arlington, TX 76006

Laboratory ID Number: E1201232001

FILTER PREPARATION PRIOR TO ANALYSES: The complete filtering unit was initially rinsed with deionized water.

ORGANIC TESTING

Description of Methods:

Volatile Organic (Method 524.2): 250 μ L of volatile organic standard in methanol at 2000 μ g/mL was added to 2 liter of deionized water. This spiked water (concentration =250 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedures was performed on 06/14/12.

<u>Chlorinated Pesticides (Method 505)</u>: 1.0 mL of Chlorinated Pesticides at $20 \sim 200 \ \mu g/mL$ was added to 2.0 liter of deionized water. This spiked water (concentration = $10 \sim 100 \ \mu g/l$) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/21/12.

Nitrogen and Phosphorus containing Pesticides (Method 507): 2.0 mL of simazine, atrazine, molinate and thiobencarb at 50 μ g/mL was added to 2.0 liter of deionized water. This spiked water (concentration = 50 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/21/12.

<u>Chlorinated Acids (Method 515.3)</u>: 2.0 mL of Chlorinated Acids at 6-46 μ g/mL was added to 2.0 liter of deionized water. This spiked water (concentration = 6-46 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/12/12.

Protecting Consumers and the Environment Since 1881 To Enrich Lives Through Effective and Caring Service

Carbamates (Method 531.1): 2.0 mL of Carbamate at 100 μ g/mL was added to 2.0 liter of deionized water. This spiked water (concentration = 100 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/13/12.

Glyphosate (Method 547): 2.0 mL of glyphosate standard at 100 μ g/mL was added to 2.0 liter of deionized water. This spiked water (concentration = 100 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/07/12.

Method 504 Spike Sample Preparation: 1.0 mL of EDB & DBCP standard at 200 μ g/mL was added to 2.0 liters of deionized water. This spiked water (concentration = 100 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 07/17/12.

Method 552 Spike Sample Preparation: 1.0 mL of EPA 552 standard solution at 100 μ g/mL was added to 2.0 liters of deionized water. This spiked water (concentration = 50 μ g/L) was transferred to filter unit E1201232001, filtered through the unit and analyzed. Procedure was performed on 06/14/12.

Analyte	Method Used ¹	Pre- Filtered Concentration	Units	Post- Filtration Result	% Reduction	Reporting Limit	Date Analyzed
Dibromochloropropane (DBCP)	504.1	100	μg/l	<.01	>99.99	0.01	07/20/12
Ethylene Dibromide (EDB)	504.1	100	μg/l	<.02	>99.98	0.02	07/20/12
Bromodichloromethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Bromoform	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Chloroform	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Dibromochloromethane	524.2	250	μg/l	< 0.5	>99.80	0.50	06/14/12
Benzene	524.2	250	μg/l	< 0.5	>99.80	0.50	06/14/12
Carbon Tetrachloride	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,2-Dichlorobenzene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,4-Dichlorobenzene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,1-Dichloroethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,2-Dichloroethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,1-Dichloroethylene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
cis-1,2-Dichloroethylene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
trans-1,2-Dichloroethylene	524.2	250	μg/l	< 0.5	>99.80	0.50	06/14/12
Dichloromethane (methylene chloride)	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,2-Dichloropropane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12

			T				
Analyte	Method Used ¹	Pre- Filtered Concentration	Units	Post- Filtration Result	% Reduction	Reporting Limit	Date Analyzed
Ethyl benzene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,3-Dichloropropene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,1-Dichloroethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Monochlorobenzene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Styrene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,1,2,2-Tetrachloroethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Tetrachloroethylene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Toluene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,2,4-Trichlorobenzene	524.2	250	μg/l	<0.5	>99.80	0.50	
1,1,1-Trichloroethane	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
1,1,2-Trichloroethane	524.2	250	μg/l	<0.5	>99.80		06/14/12
Trichloroethylene	524.2	250	μg/l	<0.5	>99.80	0.50	06/14/12
Trichlorotrifluoroethane (Freon 113)	524.2	250	μg/l	<10	>96.00	10.0	06/14/12
Total Xylenes	524.2	750	μg/l	<1.5	>99.80	1.50	06/14/12
MTBE	524.2	250	μg/l	<1	>99.60	1.00	06/14/12
Hexachlorocyclopentadiene	505	10	μg/l	<1	>90.00	1.00	06/14/12
Lindane	505	10	μg/l	<0.2	>98.00	0.20	06/21/12
Heptachlor	505	10	μg/l	<0.01	>99.90		06/21/12
Heptachlor epoxide	505	10	μg/l	<0.01	>99.90	0.01	06/21/12
Endrin	505	10	μg/1	<0.1	>99.00	0.01	06/21/12
Methoxychlor	505	100	μg/l	<10	>90.00	0.10	06/21/12
Molinate	507	50	μg/l	<2	>96.00	2.00	06/21/12
Atrazine	507	50	μg/l	<0.5	>99.00	0.50	06/22/12 06/22/12
Simazine	507	50	μg/l	<1	>98.00	1.00	06/22/12
Thiobencarb	507	50	μg/l	<1	>98.00	1.00	
2,4-D	515.3	10.1	μg/l	<1	>90.10	1.00	06/22/12
Dinoseb	515.3	14.3	μg/l	<2	>86.01	2.00	06/12/12
Pentachlorophenol	515.3	6.65	μg/l	<0.2	>96.99	0.20	06/12/12
Silvex	515.3	10.2	μg/l	<1	>90.20	1.00	06/12/12
Oxamyl	531.1	100	μg/l	<5	>95.00		06/12/12
Carbofuran	531.1	100	μg/l	<5	>95.00	5.00	06/14/12
Glyphosate	547	100	μg/l	<25	>75.00	5.00 25.0	06/14/12 06/08/12

Analyte	Method Used ²	Pre- Filtered Concentration	Units	Post- Filtration Result	% Reduction	Reporting Limit	Date Analyzed
Bromoacetic Acid	552.2	50	μg/l	<1	>98.00	1.00	6/14/12
Chloroacetic Acid	552.2	50	μg/l	<2	>96.00	2.00	6/14/12
Dibromoacetic Acid	552.2	50	μg/l	<1	>98.00	1.00	6/14/12
Dichloroacetic Acid	552.2	50	μg/l	<1	>98.00	1.00	6/14/12
Total Haloacetic Acids (HAA5)	552.2	50	μg/l	<1	>98.00	1.00	6/14/12
Trichloroacetic Acid	552.2	50	μg/ <u>1</u>	<1	>98.00	1.00	6/14/12

Submitted By:

09/04/2012 Shaomeng Maggie Xuan, Supervising Toxicologist Date

Thant Z. Win, Chief

^{1.} Method number from EPA publication EPA-600/4-79-020, rev. 3/83.

^{2.} Method number from EPA publication EPA-600/4-79-020, rev. 3/83.